A Computable Measure of Suboptimality for Entropy-Regularised Variational Objectives

Clémentine Chazal, Heishiro Kanagawa, Zheyang Shen, Anna Korba, Chris. J. Oates

October 22th, 2025

Consider a $P \in \mathcal{P}(\mathbb{R}^d)$ as the minimizer of

$$\mathcal{J}(Q) := \mathcal{L}(Q) + \mathrm{KLD}(Q||Q_0) \tag{1}$$

where Q_0 is a reference distribution and $\mathcal L$ a loss on $\mathcal P(\mathbb R^d)$.

Consider a $P \in \mathcal{P}(\mathbb{R}^d)$ as the minimizer of

$$\mathcal{J}(Q) := \mathcal{L}(Q) + \mathrm{KLD}(Q||Q_0) \tag{1}$$

where Q_0 is a reference distribution and \mathcal{L} a loss on $\mathcal{P}(\mathbb{R}^d)$.

The principal issue is that P is not tractable,

Consider a $P \in \mathcal{P}(\mathbb{R}^d)$ as the minimizer of

$$\mathcal{J}(Q) := \mathcal{L}(Q) + \mathrm{KLD}(Q||Q_0) \tag{1}$$

where Q_0 is a reference distribution and \mathcal{L} a loss on $\mathcal{P}(\mathbb{R}^d)$.

The principal issue is that P is not tractable,

▶ We do not have access to the unormalized density of P (except if \mathcal{L} is linear: if $\mathcal{L} = \int v(x) \mathrm{d}Q(x)$, then $\mathcal{J}(Q) = \mathrm{KLD}(Q||e^{-v}Q_0)$ and $P \propto e^{-v}Q_0$).

Consider a $P \in \mathcal{P}(\mathbb{R}^d)$ as the minimizer of

$$\mathcal{J}(Q) := \mathcal{L}(Q) + \mathrm{KLD}(Q||Q_0) \tag{1}$$

where Q_0 is a reference distribution and $\mathcal L$ a loss on $\mathcal P(\mathbb R^d)$.

The principal issue is that P is not tractable,

- ▶ We do not have access to the unormalized density of P (except if \mathcal{L} is linear: if $\mathcal{L} = \int v(x) \mathrm{d}Q(x)$, then $\mathcal{J}(Q) = \mathrm{KLD}(Q||e^{-v}Q_0)$ and $P \propto e^{-v}Q_0$).
- ▶ \mathcal{J} cannot be computed on discrete distributions as $\hat{Q} = \sum_{i=1}^{n} \delta_{x_i}$ because of the Kullback Leibler term.

Consider a $P \in \mathcal{P}(\mathbb{R}^d)$ as the minimizer of

$$\mathcal{J}(Q) := \mathcal{L}(Q) + \mathrm{KLD}(Q||Q_0) \tag{1}$$

where Q_0 is a reference distribution and \mathcal{L} a loss on $\mathcal{P}(\mathbb{R}^d)$.

The principal issue is that P is not tractable,

- ▶ We do not have access to the unormalized density of P (except if \mathcal{L} is linear: if $\mathcal{L} = \int v(x) \mathrm{d}Q(x)$, then $\mathcal{J}(Q) = \mathrm{KLD}(Q||e^{-v}Q_0)$ and $P \propto e^{-v}Q_0$).
- ▶ \mathcal{J} cannot be computed on discrete distributions as $\hat{Q} = \sum_{i=1}^{n} \delta_{x_i}$ because of the Kullback Leibler term.

Intuition: Instead of minimizing \mathcal{J} , minimizing the 'size of the gradient of \mathcal{J} ', $\|\nabla_{\mathrm{V}}\mathcal{J}(Q)\| = \sup_{\|\mathbf{v}\| \le 1} \langle \nabla_{\mathrm{V}}\mathcal{J}(Q), \mathbf{v} \rangle_{L^2(Q)}.$

Kernel Gradient Discrepancy

Gradient Discrepancy

If Q and Q_0 admit density function respectively q and q_0 ,

$$abla_{\mathrm{V}}\mathcal{J}(Q)(x) =
abla_{\mathrm{V}}\mathcal{L}(Q)(x) +
abla \log \frac{q(x)}{q_0(x)}.$$

Gradient Discrepancy

If Q and Q_0 admit density function respectively q and q_0 ,

$$\nabla_{\mathbf{V}} \mathcal{J}(Q)(x) = \nabla_{\mathbf{V}} \mathcal{L}(Q)(x) + \nabla \log \frac{q(x)}{q_0(x)}.$$

Projecting the $abla_{
m V}\mathcal{J}(\mathit{Q})$ on the vector field $\mathit{v}:\mathbb{R}^d
ightarrow \mathbb{R}^d$ gives

$$\begin{split} & \int \nabla_{\mathbf{V}} \mathcal{J}(Q)(x) \cdot v(x) \, \mathrm{d}Q(x) \\ & = \int \left[\nabla_{\mathbf{V}} \mathcal{L}(Q)(x) - (\nabla \log q_0)(x) \right] \cdot v(x) \, \mathrm{d}Q(x) + \int (\nabla \log q)(x) \cdot v(x) \, \mathrm{d}Q(x) \\ & = \int \left[\nabla_{\mathbf{V}} \mathcal{L}(Q)(x) - (\nabla \log q_0)(x) \right] \cdot v(x) \, \mathrm{d}Q(x) - \int (\nabla \cdot v)(x) \, \mathrm{d}Q(x) \\ & = -\int \mathcal{T}_Q v(x) \, \mathrm{d}Q(x), \qquad \mathcal{T}_Q v(x) \coloneqq \left[(\nabla \log q_0)(x) - \nabla_{\mathbf{V}} \mathcal{L}(Q)(x) \right] \cdot v(x) + (\nabla \cdot v)(x). \end{split}$$

Gradient Discrepancy

If Q and Q_0 admit density function respectively q and q_0 ,

$$\nabla_{\mathbf{V}} \mathcal{J}(Q)(x) = \nabla_{\mathbf{V}} \mathcal{L}(Q)(x) + \nabla \log \frac{q(x)}{q_0(x)}.$$

Projecting the $abla_{
m V}\mathcal{J}(\mathit{Q})$ on the vector field $\mathit{v}:\mathbb{R}^d
ightarrow \mathbb{R}^d$ gives

$$\begin{split} & \int \nabla_{\mathbf{V}} \mathcal{J}(Q)(x) \cdot \mathbf{v}(x) \, \mathrm{d}Q(x) \\ & = \int \left[\nabla_{\mathbf{V}} \mathcal{L}(Q)(x) - (\nabla \log q_0)(x) \right] \cdot \mathbf{v}(x) \, \mathrm{d}Q(x) + \int (\nabla \log q)(x) \cdot \mathbf{v}(x) \, \mathrm{d}Q(x) \\ & = \int \left[\nabla_{\mathbf{V}} \mathcal{L}(Q)(x) - (\nabla \log q_0)(x) \right] \cdot \mathbf{v}(x) \, \mathrm{d}Q(x) - \int (\nabla \cdot \mathbf{v})(x) \, \mathrm{d}Q(x) \\ & = - \int \mathcal{T}_Q \mathbf{v}(x) \, \mathrm{d}Q(x), \qquad \mathcal{T}_Q \mathbf{v}(x) \coloneqq \left[(\nabla \log q_0)(x) - \nabla_{\mathbf{V}} \mathcal{L}(Q)(x) \right] \cdot \mathbf{v}(x) + (\nabla \cdot \mathbf{v})(x). \end{split}$$

Then, one can define the Gradient Discrepancy,

$$\mathrm{GD}(Q) := \sup_{\substack{v \in \mathcal{V} \text{ s.t.} \\ (\mathcal{T}_{QV})_{-} \in \mathcal{L}^{1}(Q)}} \left| \int \mathcal{T}_{Q} v(x) \, \mathrm{d} Q(x) \right|.$$

Kernel Gradient Discrepancy (KGD)

Let $K: \mathbb{R}^d \times \mathbb{R}^d \to \mathbb{R}^{d \times d}$ be a matrix-valued kernel. Let $\mathcal{B}_K = \{v \in \mathcal{H}_K: \|v\|_{\mathcal{H}_K} \leq 1\}$. The **Kernel Gradient Discrepancy (KGD)** is defined as

$$\operatorname{KGD}_{\mathcal{K}}(Q) := \sup_{\substack{v \in \mathcal{B}_{\mathcal{K}} \text{ s.t.} \\ (\mathcal{T}_{Q}v)_{-} \in \mathcal{L}^{1}(Q)}} \left| \int \mathcal{T}_{Q}v(x) \, \mathrm{d}Q(x) \right|$$

Kernel Gradient Discrepancy (KGD)

Let $K: \mathbb{R}^d \times \mathbb{R}^d \to \mathbb{R}^{d \times d}$ be a matrix-valued kernel. Let $\mathcal{B}_K = \{v \in \mathcal{H}_K: \|v\|_{\mathcal{H}_K} \leq 1\}$. The **Kernel Gradient Discrepancy (KGD)** is defined as

$$\operatorname{KGD}_{\mathcal{K}}(Q) := \sup_{\substack{v \in \mathcal{B}_{\mathcal{K}} \text{ s.t.} \\ (\mathcal{T}_{Q}v)_{-} \in \mathcal{L}^{1}(Q)}} \left| \int \mathcal{T}_{Q}v(x) \, \mathrm{d}Q(x) \right|$$

Remarking that $\mathrm{KGD}_K(Q) = \sup_{\substack{v \in \mathcal{B}_K \text{ s.t.} \\ (\mathcal{T}_Q v) = \in \mathcal{L}^1(Q)}} \left\langle \int k_K^Q(x,.) \mathrm{d}Q(x), v \right\rangle$ where

$$k_{K}^{Q}(x,x') := \sum_{i=1}^{d} \sum_{j=1}^{d} \frac{1}{\rho_{Q}(x)\rho_{Q}(x')} \partial_{x'_{j}} \partial_{x_{i}} \left(\rho_{Q}(x) K_{i,j}(x,x') \rho_{Q}(x') \right)$$

and $\rho_Q(x) := q_0(x) \exp(-\mathcal{L}'(Q)(x))$,

Kernel Gradient Discrepancy (KGD)

Let $K: \mathbb{R}^d \times \mathbb{R}^d \to \mathbb{R}^{d \times d}$ be a matrix-valued kernel. Let $\mathcal{B}_K = \{v \in \mathcal{H}_K: \|v\|_{\mathcal{H}_K} \leq 1\}$. The **Kernel Gradient Discrepancy (KGD)** is defined as

$$\operatorname{KGD}_{\mathcal{K}}(Q) := \sup_{\substack{v \in \mathcal{B}_{\mathcal{K}} \text{ s.t.} \\ (\mathcal{T}_{Q}v)_{-} \in \mathcal{L}^{1}(Q)}} \left| \int \mathcal{T}_{Q}v(x) \, \mathrm{d}Q(x) \right|$$

Remarking that $\mathrm{KGD}_K(Q) = \sup_{\substack{v \in \mathcal{B}_K \text{ s.t.} \\ (\mathcal{T}_Q v) = \in \mathcal{L}^1(Q)}} \left\langle \int k_K^Q(x,.) \mathrm{d}Q(x), v \right\rangle$ where

$$k_{K}^{Q}(x,x') \coloneqq \sum_{i=1}^{d} \sum_{j=1}^{d} \frac{1}{\rho_{Q}(x)\rho_{Q}(x')} \partial_{x'_{j}} \partial_{x_{j}} \left(\rho_{Q}(x)K_{i,j}(x,x')\rho_{Q}(x')\right)$$

and $\rho_Q(x) \coloneqq q_0(x) \exp(-\mathcal{L}'(Q)(x))$, we finnally get

$$\operatorname{KGD}_K(Q) = \left(\int \int k_K^Q(x,x') \, \mathrm{d}Q(x) \mathrm{d}Q(x') \right)^{1/2}.$$

Experiments

Experiments: MFNN

How to sample from P? A popular algorithm: **MFLD** (Mean Field Langevin Dynamics algorithm),

$$X_i^{t+1} = X_i^t + \epsilon[(
abla \log q_0) -
abla_{\mathrm{V}}\mathcal{L}(Q_n^t)](X_i^t) + \sqrt{2\epsilon}Z_t^i, \quad Z_t^i \stackrel{\mathrm{iid}}{\sim} \mathcal{N}(0,1), \quad Q_n^t \coloneqq rac{1}{n}\sum_{i=1}^n \delta_{X_j^t},$$

Experiments : MFNN

How to sample from P? A popular algorithm: **MFLD** (Mean Field Langevin Dynamics algorithm),

$$X_i^{t+1} = X_i^t + \epsilon[(
abla \log q_0) -
abla_{
abla} \mathcal{L}(Q_n^t)](X_i^t) + \sqrt{2\epsilon}Z_t^i, \quad Z_t^i \overset{ ext{iid}}{\sim} \mathcal{N}(0,1), \quad Q_n^t \coloneqq rac{1}{n}\sum_{j=1}^n \delta_{X_j^t},$$

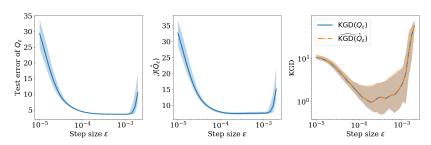
MFNN: Consider independant observations $(z_1, y_n), ..., (z_N, y_N)$ linked by $y_i = f(z_i) + \xi_i, \, \xi_i \sim \mathcal{N}(0, \sigma^2)$ where f is a target function. We take \mathcal{L} to be the loss of a regression problem

$$\mathcal{L}(Q) = \frac{\lambda}{N} \sum_{i=1}^{N} \ell(y_i, \mathbb{E}_{X \sim Q}[\Phi(z_i, X)]), \tag{2}$$

where Φ is a Neural Network with parameter X. We want $f \approx \mathbb{E}_{X \sim Q}[\Phi(z_i, X)]$.

MFNN: Stepsize selection with KGD

We propose KGD as a measure to evaluate the best step size for MFLD.



MFNN: Novel sampling algorithms

For this example, we have implemented two new methods whose purpose is to optimise KGD:

Variational Inference: Consider $Q_{\theta}=T^{\theta}_{\#}\mu_{0}$ for a reference distribution μ_{0} , we solve

$$\theta_{\star} \in \operatorname*{arg\,min}_{\theta \in \Theta} \ \mathrm{KGD}_{K}(Q_{\theta})$$

by doing a gradient descent on θ .

MFNN: Novel sampling algorithms

For this example, we have implemented two new methods whose purpose is to optimise KGD:

Variational Inference: Consider $Q_{\theta}=T^{\theta}_{\#}\mu_{0}$ for a reference distribution μ_{0} , we solve

$$\theta_{\star} \in \operatorname*{arg\,min}_{\theta \in \Theta} \ \mathrm{KGD}_{K}(Q_{\theta})$$

by doing a gradient descent on θ .

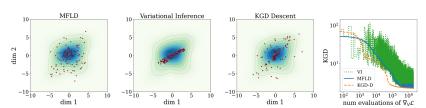
KGD Descent: Let's take the discrete distribution $\hat{Q}_n = \frac{1}{n} \sum_{j=1}^n \delta_{x_j}$, we solve

$$\{x_1,...,x_n\} \in \operatorname{\mathsf{arg}} \min \operatorname{KGD}_{\mathcal{K}}(\hat{Q}_n)$$

with gradient descent : $x_i^{t+1} = x_i^t - \varepsilon \nabla_{\mathrm{V}} \mathrm{KGD}_K^2(Q_n^t)(x_i^t)$.

MFNN: Comparison of all the methods

Here is plot the final distribution of the parameters for all the methods.



Predictively Oriented Posteriors

Another example of application is **Predictively Oriented Posteriors**. Let p(.|x) a parametric statistical model for independant data $\{y_i\}_{i=1,...,N}$. Let's take

$$\mathcal{L}(Q) = \frac{1}{2\lambda_N} \text{MMD}^2 \left(\int p(\cdot|x) \, dQ(x), \frac{1}{N} \sum_{i=1}^N \delta_{y_i} \right)$$
(3)

Predictively Oriented Posteriors

Another example of application is **Predictively Oriented Posteriors**. Let p(.|x) a parametric statistical model for independant data $\{y_i\}_{i=1,...,N}$. Let's take

$$\mathcal{L}(Q) = \frac{1}{2\lambda_N} \text{MMD}^2 \left(\int p(\cdot|x) \, dQ(x), \frac{1}{N} \sum_{i=1}^N \delta_{y_i} \right)$$
(3)

Algoritms used for this example:

Extensible Sampling: Start from $x_0 \in \mathbb{R}^d$ and then apply the iterative algorithm:

$$x_n \in \underset{x \in \mathbb{R}^d}{\operatorname{arg\,min}} \operatorname{KGD}_K \left(\frac{1}{n} \delta_x + \frac{1}{n} \sum_{i=1}^{n-1} \delta_{x_i} \right)$$
 (4)

where the minimum is searched on a grid in \mathbb{R}^d .

Predictively Oriented Posteriors: Variational Gradient Descent

▶ Variational Gradient Descent: This algorithm is a generalised version of SVGD. Let $v : \mathbb{R}^d \to \mathbb{R}^d$ and $\varepsilon > 0$

$$\frac{\mathrm{d}}{\mathrm{d}\epsilon} \mathcal{J}((\mathrm{I}_d + \epsilon v)_\# Q) \Big|_{\epsilon=0} = -\int \mathcal{T}_Q v(x) \, \mathrm{d}Q(x).$$

Predictively Oriented Posteriors: Variational Gradient Descent

Variational Gradient Descent: This algorithm is a generalised version of SVGD. Let ν : ℝ^d → ℝ^d and ε > 0

$$\left.\frac{\mathrm{d}}{\mathrm{d}\epsilon}\mathcal{J}((\mathrm{I}_d+\epsilon v)_\# Q)\right|_{\epsilon=0} = -\int \mathcal{T}_Q v(x) \;\mathrm{d}Q(x).$$

Then the optimal direction is proportional to $\int k_K^Q(x,.)\mathrm{d}Q(x)$ which is

$$v_Q(\cdot) \propto \int \{k(x,\cdot)(
abla \log q_0 -
abla_{
m V} \mathcal{L}(Q))(x) +
abla_1 k(x,\cdot)\} \; \mathrm{d}Q(x),$$

Predictively Oriented Posteriors: Variational Gradient Descent

Variational Gradient Descent: This algorithm is a generalised version of SVGD. Let ν : ℝ^d → ℝ^d and ε > 0

$$\left.\frac{\mathrm{d}}{\mathrm{d}\epsilon}\mathcal{J}((\mathrm{I}_d+\epsilon v)_\# Q)\right|_{\epsilon=0} = -\int \mathcal{T}_Q v(x) \;\mathrm{d}Q(x).$$

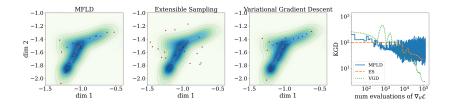
Then the optimal direction is proportional to $\int k_K^Q(x,.)\mathrm{d}Q(x)$ which is

$$v_Q(\cdot) \propto \int \{k(x,\cdot)(
abla \log q_0 -
abla_{
m V} \mathcal{L}(Q))(x) +
abla_1 k(x,\cdot)\} \; \mathrm{d}Q(x),$$

And then, we deduce the sampling algorithm sampling algorithm :

$$x_i^{t+1} = x_i^t + \frac{1}{n} \sum_{j=1}^n k(x_i^t, x_j^t) (\nabla \log q_0 - \nabla_{\mathbf{V}} \mathcal{L}(Q_n^t))(x_j^t) + \nabla_1 k(x_j^t, x_i^t),$$

Predictively Oriented Posteriors : Comparison of the methods



Thank you!