Statistical and Geometrical properties of the regularized kernel Kullback Leibler

divergence

anr agence nationale de la recherche Clémentine Chazal Anna Korba Francis Bach Clémentine Chazal Anna Korba

CREST/ENSAE, IP Paris¹, INRIA, Paris²

Contributions

- Introduction of a regularized definition of the KKL form [1] which is defined for any probability distributions and study of its properties.
- Derivation of closed form expressions for the regularized KKL and its Wasserstein Gradient on empirical measures.
- Implementation of a sampling algorithm following a gradient descent scheme that obtains results on low-dimensional experiments.

Introduction and motivations

Problem: To approximate a target distribution q on \mathbb{R}^d , we solve the optimization problem

$$\min_{p \in \mathcal{P}(\mathbb{R}^d)} \mathcal{F}(p)$$

where $\mathcal{F}(p) = D(p||q)$ with D a divergence or a distance.

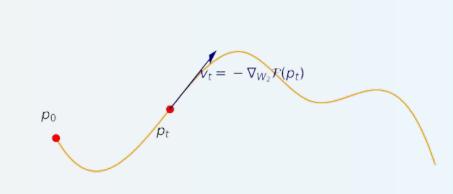
Wasserstein gradient flow:

• If for any function $h: \mathbb{R}^d \to \mathbb{R}^d$, $\varepsilon > 0$, the expansion

$$\mathcal{F}((I_d + \varepsilon h)_{\#p}) = \mathcal{F}(p) + \varepsilon \langle \nabla_{W_2} \mathcal{F}(p), h \rangle_p + o(\varepsilon),$$

holds, then $\nabla_{W_2}\mathcal{F}(p):\mathbb{R}^d\to\mathbb{R}^d$ is the Wasserstein gradient of \mathcal{F} .

Wasserstein Gradient Flow
$$p(0) = p_0,$$
 $\partial_t p(t) = -\nabla_{W_2} \mathcal{F}(p(t)).$



The choice of D dictates the overall dynamics. In this project we selected the regularized Kernel Kullback Leibler Divergence.

Kernel Kullback Leibler divergence (KKL)

Kernel Kullback Leibler divergence (KKL): Given \mathcal{H} a RKHS with reproducing kernel k, for $p \ll q$, the KKL divergence is

$$KKL(p||q) := Tr[\Sigma_p(\log \Sigma_p - \log \Sigma_q)]$$

where

$$\Sigma_p = \int k(.,x)k(.,x)^* dp(x).$$

If k^2 is universal and $\forall x \in \mathbb{R}^d$, k(x,x) = 1 then

$$KKL(p||q) = 0 \Leftrightarrow p = q.$$

Regularized KKL: To handle cases where $p \not\ll q$, the regularized KKL is defined for $\alpha \in]0,1[$ as

$$KKL_{\alpha}(p \parallel q) := KKL(p \parallel (1 - \alpha)q + \alpha p)$$

Closed form for regularized KKL on empirical distributions

Regularized KKL for empirical distributions: Let $x^1, \ldots, x^n \sim p$, $y^1, \ldots, y^m \sim q$ and note $\hat{p} = \frac{1}{n} \sum_{i=1}^n \delta_{x^i}$ and $\hat{q} = \frac{1}{m} \sum_{i=1}^m \delta_{y^i}$.

Regularized KKL admits a closed form expression

$$KKL_{\alpha}(\hat{p}||\hat{q}) = Tr\left(\frac{1}{n}K_{\hat{p}}\log\frac{1}{n}K_{\hat{p}}\right) - Tr\left(I_{\alpha}K\log(K)\right),$$

$$I_{lpha} = egin{pmatrix} rac{1}{lpha}I & 0 \ 0 & 0 \end{pmatrix} ext{ and } K = egin{pmatrix} rac{lpha}{n}K_{\hat{p}} & \sqrt{rac{lpha(1-lpha)}{nm}}K_{\hat{p},\hat{q}} \ \sqrt{rac{lpha(1-lpha)}{nm}}K_{\hat{q},\hat{p}} & rac{1-lpha}{m}K_{\hat{q}} \end{pmatrix}$$

and $K_{\hat{p}}=(k(x^i,x^j))_{i,j=1}^n$, $K_{\hat{q}}=(k(y^i,y^j))_{i,j=1}^m$, $K_{\hat{p},\hat{q}}=(k(x^i,y^j))_{i,j=1}^{n,m}$.

Wasserstein gradient for empirical measures:

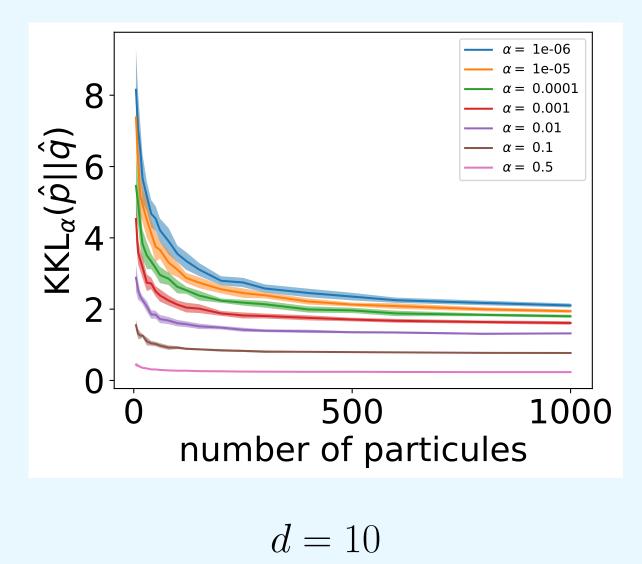
 $\nabla_{W_2} \mathcal{F}(\hat{p})(x) = \nabla_x \left(S(x)^T g(K_{\hat{p}}) S(x) - T(x)^T g(K) T(x) - T(x)^T A T(x) \right)$ where $S(x)=(\frac{1}{\sqrt{n}}k(x,x^i))_i$, $T(x)=((\sqrt{\frac{\alpha}{n}}k(x,x^i))_i,(\sqrt{\frac{1-\alpha}{m}}k(x,y^j))_j)$ and A is a matrix depending on the eigenvalues and eigenvectors of K.

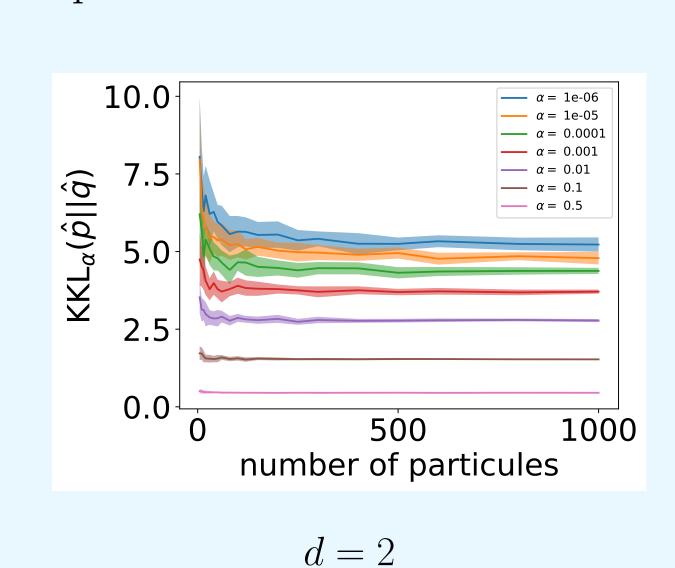
Theorical properties of the regularized KKL

- The regularized KKL is consistant to the true KKL for $p \ll q$ when $\alpha \to 0$: $\mathrm{KKL}_{\alpha}(p||q) \xrightarrow[\alpha \to 0]{} \mathrm{KKL}(p||q).$
- $\alpha \to \text{KKL}_{\alpha}(p||q)$ is decreasing.
- Consistency of the regularized KKL for empirical measures:

$$\mathbb{E}|\mathrm{KKL}_{\alpha}(\hat{p}||\hat{q}) - \mathrm{KKL}_{\alpha}(p||q)| \leqslant C_{p,\alpha} \frac{\log n}{\sqrt{m \wedge n}} + C'_{p,\alpha} \frac{\log^2 n}{m \wedge n}.$$

The following experiments illustrate the previous theorical results.

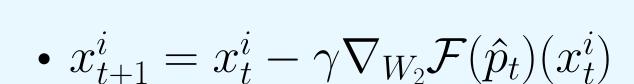




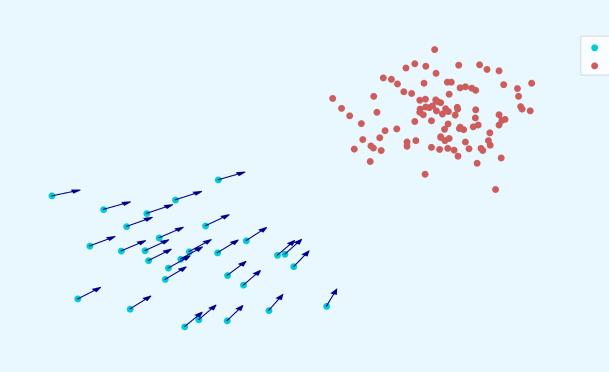
Sampling experiments

Now we fix \hat{q} , we optimize \hat{p} by a discretisation of the Wasserstein gradient flow of the regularized KKL.

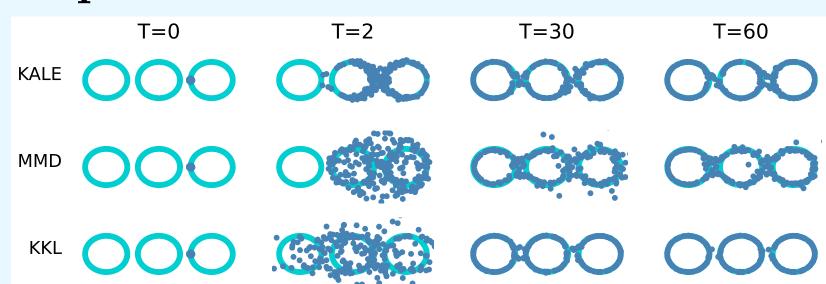
Descent scheme: Let $\hat{p}_t = \frac{1}{n} \sum_{i=1}^n \delta_{x_i^t}$, $\gamma > 0$, t = 1, ..., T.

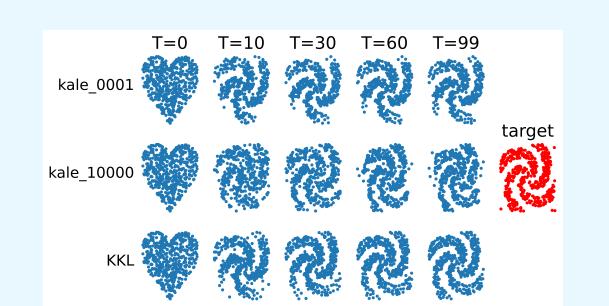


• $\hat{p}_{t+1} = (I_d - \gamma \nabla_{W_2} \mathcal{F}(\hat{p}_t))_{\#\hat{p}}$



Experiments:





MMD, KALE and KKL flow for 3 rings target.

Shape transfer

Reference:

[1] Francis Bach. Information theory with kernel methods. IEEE Transactions on Information Theory, 69(2):752-775, 2022.